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MEASUREMENT OF STRUCTURAL INTENSITY
USING A NORMAL MODE APPROACH
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A method is presented for the measurement of structural intensity using a normal mode
approach. This method is tested on an assembly of two plates. The structural intensity field
and the divergence of structural intensity are evaluated. The power injected into the
structure by a shaker is evaluated in two different ways: directly by measuring the force
and the velocity at the excitation point, and by integrating the structural intensity vectors
over a closed curve containing the vibration source. There is a close agreement between
the results obtained by the two methods.
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1. INTRODUCTION

The concept of structural intensity is introduced in order to extend the vector acoustics
approach to energy flow in structure-borne sound fields. This concept is completely
analogous to sound intensity, as it represents the same physical quantity, i.e., the net
mechanical energy transmitted through a unit surface.

Structural intensity is used to describe the transfer of vibration energy. The spatial
distribution of structural intensity within the structure offers information on energy
transmission paths and positions of sources and sinks of mechanical energy. Theoretical
formulations of structural intensity and corresponding measurement techniques have been
developed and successfully applied for various types of simple structural elements (beams,
plates, pipes . . .).

The first publications concerning structural intensity appeared in the seventies [1–3].
These papers deal with the theoretical development of the measurement methods. The
publications which followed were more concerned with the applications of developed
measurement techniques to practical measurements in beams and plates [4, 5]. In reference
[6], acoustical holography was used as a tool for the measurement of the structural
intensity. References [7–9] deal with the theoretical development of the measurement
methods for pipes and shells.

The two types of measurement techniques have been in use so far: one ‘‘direct’’, where
fundamental expressions for intensity were suitably adapted for measurement [2, 3, 5], the
other based on wave representation of the vibratory field which in turn permitted
simplifications [1, 4, 6]. A well designed measurement method represents a compromise
between the complexity of the rigorous theoretical formulation and the required simplicity
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of measurement procedures. It has been shown that the measurement accuracy becomes
poor with the increase of the complexity of the method applied, which seriously limited
the practical use of some measurement techniques.

Of primary practical concern however are assemblies of structural elements. The
presence of multiple wave reflections and near fields due to changes in thickness, changes
of cross-section, etc., diminishes dramatically the accuracy of most of the measurement
methods based on the wave approach and on the far field approximation.

Experimental modal analysis has been widely accepted as the principal investigation tool
in the structural dynamics of built-up structures. It therefore seems appropriate to estimate
the modal approach in structural intensity measurements in such types of structures. The
first attempt to use normal modes in order to evaluate the structural intensity field in
built-up structures was performed by Pavic and Gavric [10–13]. In these works the
numerical computation of structural intensity by using a finite element technique was
considered.

2. STRUCTURAL INTENSITY MEASUREMENTS BY MODAL APPROACH—
THEORETICAL BACKGROUND

2.1.  

Active structural intensity is a time independent vector quantity defined by the following
expression for a given point of structure and for sinusoidal vibration:

Ik =−1
2R[s̃klñ*l ]. (1)

It involves the complex amplitude of the stress tensor s̃kl and the complex amplitude of
the particle velocity vector ñ*l . Complex quantities are denoted by a tilde sign, R[...]
represents the real part, while the asterisk denotes complex conjugate. In the case of steady
state random vibration the structural intensity is defined by the real part of the
cross-spectra between the stress components and corresponding velocity components.

In the following text the proposed technique based on measured modal properties is
developed by using the mathematical notation appropriate for sinusoidal vibrations. The
corresponding random vibration formulae can easily be deduced from the sinusoidal type
ones.

2.2.     

In any modal approach, the number of modes which enter the analysis has to be
appropriately chosen. Usually, for computation of the displacement field or its time
derivatives, the number of modes is chosen in such a way that the highest eigenfrequency
used in computation is a few times higher than the excitation frequency. This criterion was
shown not to be sufficient when structural intensity was concerned [10].

Structural intensity is a result of an interaction between the stresses and the
corresponding velocities. The stresses are proportional to the spatial derivatives of the
displacements. The spatial distributions of stresses are not as ‘‘smooth’’ as the
corresponding distributions of displacements. For example, the bending displacements of
a simply supported beam due to a concentrated static force can be represented by a
‘‘smooth’’ polynomial type function, while the corresponding distribution of the lateral
shear force has a ‘‘jump’’ at the force position. The same can be observed in the vicinity
of any abrupt change of geometry (cross-section, thickness, etc.), or of material properties
of the structure. The number of modes sufficient for an accurate estimate of the ‘‘smooth’’
displacement field, generally is not sufficient for the approximation of its spatial
derivatives. Therefore the required number of modes for an accurate analysis of dynamic
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stresses may increase by one or more orders of magnitude [10–13]. Since the conventional
experimental modal analysis cannot deal with such a large number of modes, the higher
order modes, necessary for an adequate representation of intensity distribution, have to
be accounted for in a more appropriate way. A technique based on approximation of
higher order modes by the corresponding quasi-static solution, when computation of
structural intensity is concerned, was developed in reference [13]. In the present article a
corresponding experimental procedure which relies on measurement of vibrations in
operating conditions and on experimental modal analysis is proposed.

The particle velocity of an arbitrary point can be expressed using modal superposition.
The particle velocities, defining the vibration of the structure, can be written as a column
vector {ṽl}.

{ṽl}=−s
n

jvãn{fl}n −jv{R	 l}. (2)

Here v is frequency, {fl}n is a normal mode shape, ãn is the modal magnification factor,
j=z−1 represents the imaginary unit. The modal indexes are denoted by the Greek
letters (m, n, . . . ). As the number of modes which can be evaluated with a required
accuracy is limited, the complex vector {R	 l} is added in order to compensate for the
influence of the higher order modes to the velocity field {ṽl}.

The column vector of dynamics stresses {s̃kl} corresponding to the vibration defined with
the velocity field {ṽl} can also be written by using a modal superposition as

{s̃kl}= s
n

ãn{ckl}n + {S	 kl}. (3)

Equation (3) involves modal magnification factors ãm and column vectors containing
stresses {ckl}m corresponding to the mode shape {fl}m. A complex stress vector {S	 kl} is
added in order to account for the influence of the higher order modes to the stress field.

Note that both the additional stress vector {S	 kl} and modal stresses {ckl}m are computed
by using the displacement-type vector {R	 l} and mode shape vector {fl}m. The stress
evaluation procedure can be expressed in a form of a linear operator L(...):

{ckl}m =L({fl}m), {S	 kl}=L({R	 l}). (4)

The operator L(...) involves partial derivatives, and geometric and material properties of
the structure. For example, the linear operator used to compute the stresses in the axially
vibrating bar of cross-section A and modulus of elasticity E takes the form
L(...)=AE 1(...)/1x. The required partial derivative can be approximated by finite
difference techniques.

The structural intensity expressed by modal parameters takes the form

{Ik}=R$sm s
n

jvãmã*n
2

{Ik}mn%+R$sn jvã*n
2

{J	 k}v%+. . . , (5)

where the vectors {Ik}mn and {J	 k}n are obtained by an appropriate multiplication of the
terms of vectors {ckl}m, {fl}n and {S	 kl} according to equation (1):

{Ik}mn = {cklfl}mn, {J	 k}n = {S	 klfl}n. (6)

In equations (5) and (6), it is implicitly supposed that the modal superposition gives an
accurate approximation of the velocity field. Consequently, the influence of the higher
order modes, on the velocity field can be disregarded: {R	 l}1 {0}. This hypothesis is
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fulfilled when the number of modes which enter the analysis is approximately selected.
Unfortunately, the general rule which defines the number of modes which have to be taken
into account in the modal superposition does not exist and an analyst has to rely on
experience.

The number of modes which can be extracted by an experimental modal analysis is not
sufficient for an accurate representation of dynamic stresses, when structural intensity is
concerned. Therefore, the dynamic stresses due to the higher order modes {S	 kl} are not
negligible. An abrupt change of stresses, such as occurs in the vicinity of an excitation
point, cannot be described by a superposition of a moderate number of lower modal
shapes. Usually, such a moderate number of modes is sufficient for the accurate
approximation of the velocity field.

To summarize, the structural intensity can be evaluated if the following three quantities
are known: the intermodal intensity vectors {Ik}mn computed from the experimentally
evaluated mode shapes {fl}n and the corresponding modal stresses {ckl}m; the products of
the modal magnification factors ãmã*n /2; the terms which include the influence of higher
order modes (ã*m /2){J	 k}m.

The mode shapes {fl}n can be evaluated by using a conventional experimental modal
analysis. The modal stresses {ckl}m are recalculated by using the experimentally obtained
mode shapes {fl}m and an appropriate linear operator L(...), according to equation (4).
The linear operator needed for the evaluation of the stress field depends on the type of
structure. The method does not impose the same type of operator for the whole structure.
Simple structural elements can be treated separately. Different types of operator can be
combined and used for the same structure. For example the method permits the treatment
of a variety of thin-walled structures by using only two types of linear operator,
corresponding to the basic elements of structural assembly: beams and plates.

Both the modal stresses and mode shapes are the function of the structure, only. The
other terms involved in equation (5) (ãmã*n /2 and (ã*m /2){J	 k}m) depend on the structural
response and must be deduced from additional vibrational measurements in operating
conditions.

2.3.         

 

The vibration field of structure is completely defined by the spatial and frequency
distributions of particle velocities. In practice the vibrational velocities are evaluated at a
finite number of structural points {ṽk}. The usual measurement procedures evaluate the
velocity data in a form of quadratic spectral data. The complete set of measurement data
then results in a Hermitian type matrix containing the auto-spectral and the cross-spectral
data. In general, the vibrational velocity matrix [V	 kl ] is formed by n(n+1)/2 measured
complex spectra, where n represents the number of measurement points. Note that in the
case of a completely correlated vibrational field only n measurements are needed to
evaluate vibrational velocity matrix [V	 kl ]: auto-power spectrum at reference point ṽRṽ*R /2
and n−1 transfer functions H	 iR (v)= ṽi /ṽR ; R and i indicate the reference and the actual
measurement point. The vibrational velocity matrix can be expressed by using the modal
parameters:

[V	 kl ]= 1
2{ṽk}{ṽ*l }T =v2 s

m

s
n

ãmã*n
2

{fk}m{fl}T
n +v2[R	 kl ]. (7)

Here the matrix [R	 kl ] accounts for the influence of higher order modes on the velocity
field.
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By premultiplying by {fk}T
m [m]× ... and postmultiplying by ...× [m]{fl}n the right side

of equation (7) can be reduced to v2ãmã*n /2. The modes {fk}m and {ft}n are normalized
to the unit mass matrix (i.e., {fk}T

m [m]{fl}m =1 and {fk}T
n [m]{fl}n =1, while

{fk}T
m [m]{fl}n =0). The procedure implicitly supposes the orthogonality of the higher

order modes contained in [R	 kl ] and the lower order modes {fk}m, {fl}n obtained by the
experimental modal analysis. The described procedure rewritten in a matrix notation takes
the form

[ãkl ]= (1/v2)[f]T[m][V	 kl ][m][f], (8)

where [ãmn ] represents a Hermitian matrix with the terms ãmã*n /2, while [f] =
[{fk}1{fk}2, . . . , {fk}m ] is the modal matrix containing m experimentally extracted modal
vectors.

When the matrix [ãmn ] is established, the influence of higher order modes [R	 kl ] can be
evaluated by the matrix formulae

[R	 kl ]= (1/v2)[V	 kl ]− [f][ãkl ][fT]. (9)

In fact, the [R	 kl ] matrix represents the difference between the actual measured velocity field
represented by [V	 kl ] and the velocity field which can be expressed by using the extracted
modes [f]= [{fk}1{fk}2, . . . , {fk}m ] and corresponding modal factors ãmã*n /2. Ac-
cording to equation (2) and equation (9) the influence of the higher order modes can be
expressed by

[R	 kl ]= s
m

ãm

2
{fk}m{R	 *l }T + s

n

ã*n
2

{R	 k}{fk}T
n + 1

2{R	 k}{R	 *l }T. (10)

By postmultiplying by · · ·× [m]{fl}n , the right side of equation (10) can be reduced to
the vector (ã*n /2){R	 k}. Note that modal vectors are normalized to the unit mass matrix
(i.e., {fk}T

n [m]{fl}n =1 and {fk}T
m [m]{fl}n =0), while the vector {R	 l} is a linear

combination of higher order modes still considered to be orthogonal to the experimentally
extracted modes (i.e., {R	 *l }T[m]{fl}n =0). The procedure can be written in matrix form
as

[ã*R	 ]= [R	 kl ][m][f]= (1/v2)[V	 kl ][m][f]− [f][ãmn ], (11)

where [ã*R	 ]= [(ã*2 /2){R	 l}(a*2 /2){R	 l} . . . (ã*m /2){R	 l}] contains m vectors {R	 l} multiplied
by half of the corresponding modal magnification factor ã*n /2.

The appropriate linear operator L(...) applied to the vectors (ã*n /2){R	 l} results in the
stresses due to higher order modes:

L((ã*n /2){R	 l})= (ã*n /2){S	 kl}. (12)

The influence of the higher order modes on the intensity field (ã*n 2){J	 k}n =(ã*n /2){S	 klft}n

is then computed by using equation (6).
Once the products of modal magnification factors ãmã*n /2 and vectors (ã*n /2){J	 k}n have

been evaluated from the measurements in operating conditions and the intermodal
intensity vector {Ik}mn from experimental modal analysis, the computation of the
corresponding structural intensity field by using equation (5) becomes a straightforward
task.
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Figure 1. Plate structure used as test structure. The dimensions are specified in mm.

3. STRUCTURAL INTENSITY MEASUREMENTS BY THE MODAL APPROACH—
APPLICATION TO AN ASSEMBLY OF TWO PLATES

3.1.  

An assembly of two rigid coupled Perspex plates with different thicknesses was used as
test structure. The thicker plate is rectangular with a square opening, the thinner plate is
rectangular with one corner removed. These two plates are joined along a straight line
groove. Figure 1 shows the test structure with main dimensions.

The measurements were performed on a uniformly distributed mesh of 339 points; see
Figure 2. Three of these points, point 35, point 45, and point 294, were used as supporting
points, point 172 was used as the excitation point and, finally, point 196 was used as the
reference point. During the measurements the test structure was supported by three sharply
pointed circular steel cones. The plate was placed horizontally on the cones. Due to the

Figure 2. Mesh of observation points on the test structure. The plate is excited at point 172. The plate is
supported at points 35, 45 and 294. Dimensions in mm.
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weight of the plate (approximately 22·4 kg) and the small vibration amplitudes, the plate
did not lose contact with supports during the measurements.

3.2.      

A modal model of a structure is defined by the modal parameters for the modes in the
model. The modal parameters of a mode are the complex resonance frequency and the
mode shape vector. Experimental determination of the modal parameters requires certain
input data. Normally frequency response functions of mobility type, i.e., motion over
force, are used. Given a finite number of observation points, the mobilities can be written
as a quadratic matrix. Under certain conditions, see reference [14] for an example, all
modes with resonance frequencies within the analyzed frequency band can be identified
from one column (or one row) of the mobility matrix. In the case considered here the
structure is excited at one single point during operation. Thus, the column corre-
sponding to this point contains all modal information needed to calculate the vibrational
response.

The measurements were performed by using the experimental set-up shown in
Figure 3. The test structure was excited with white noise at the excitation point 172 by
using a shaker. An internal source in the FFT analyzer was used as a source signal. The
excitation force was measured using a piezoelectric force transducer mounted directly at
the excitation point 172. The response acceleration was measured by using a piezoelectric
accelerometer. The force and the acceleration signals were both conditioned in charge
amplifiers. Finally an FFT analyzer was used to estimate the mobility between the
excitation point and the response point.

The measurements were performed in the frequency range from 0–1 kHz with the
frequency resolution 1·25 Hz. Each mobility was estimated by using frequency domain
averaging to reduce influence from random errors. A typical mobility measured on the test
structure is shown in Figure 4.

When all mobilities with reference to point 172 had been measured, a commercial modal
analysis software (SMS Star Modal) was used to extract modal parameters of the test
structure. The final results were obtained by using two parameter extraction routines
denoted Global Frequency and Damping and Global Residues. Ranging from 19–550 Hz,
20 modes of the test structure were identified; see Table 1. The method validated in this
paper relies on the orthogonality of modes. Hence, the scalar product between all mode

Figure 3. Experimental set-up during mobility measurements.
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Figure 4. A typical accelerance function (magnitude) for the plate.

shape vectors was calculated and normalized. Two of these products are approximately
0·02, the rest are less than or equal to 0·01. Thus, the identified modes can be considered
to be orthogonal. It should be noted that the boundary conditions realized for the real
structure only approximated the simply supported conditions assumed in the calculations.
The motion at the supporting points was measured by placing accelerometers at point 35,
at point 45 and at point 294 on the upper surface of the plate. The motion at these points
was found to be small but non-zero. Hence the assumed simply supported boundary
conditions were reasonably closely realized during the measurements.

The modal displacements are evaluated at the nodes of the structure mesh shown in

T 1

Modal frequencies and loss factors

Mode Resonance frequency (Hz) Loss factor

1 19·1 0·12
2 33·5 0·052
3 70·4 0·070
4 90·4 0·060
5 99·4 0·066
6 106 0·055
7 143 0·041
8 161 0·048
9 191 0·048

10 221 0·044
11 246 0·048
12 275 0·042
13 294 0·049
14 306 0·043
15 371 0·047
16 389 0·034
17 429 0·042
18 481 0·043
19 523 0·045
20 550 0·045
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Figure 2. The values inside the rectangular or triangular cells of the structural mesh are
computed by averaging the corresponding nodal values.

wc =
1
n

s
n

wn . (13)

It should be noted that the modal displacements at the nodes of the structural mesh are
identified by the index n while the corresponding values at the centres of the cells of the
mesh have an index C. The same convention is used for the rotations, for the internal
forces and for the internal moments due to modal displacements. These are computed by
using the derivatives of the displacement field, the material properties and the geometry
of structure. The required derivatives of the displacement field are estimated by using a
finite difference technique. The rotations of the plate can be estimated by using the first
derivatives of the lateral displacements:

qxC 1 1w/1y =C 1Dwn /Dy, qyC 1 1w/1x =C 1−Dwn /Dx. (14)

Here the finite difference type operators D(...)/Dx and D(...)/Dy are defined as follows: for
a triangular finite difference cell,

Dwn /Dx=[2wJ −(wK +wI ]/2a, Dwn /Dy=[2wK −(wJ +wI ]/2b, (15)

and for a rectangular finite difference cell (see Figure 5).

Dwn /Dx=[(wK +wJ)− (wL +wI )]/2a,

Dwn /Dy=[(wK +wL )− (wJ +wI )]/2b. (16)

The estimates of the plate rotations qxC and qyC are computed at each finite difference cell
of the mesh defined in Figure 2. The rotations at the nodes qxn and qyn are then evaluated
by interpolating and/or extrapolating at the central values qxC and qyC. For such purposes
an averaging procedure using the values at the centres of the cells with a common node
is used. Such a procedure is sensible only for smooth functions. For example the curvatures
(defined by the second derivatives of the displacement field) of the test structure cannot
be treated in the same way. The averaging procedure applied to the plate curvatures would
completely mask the jumps of the second derivatives at the interface of the plates with
different thickness. On the contrary the internal forces and moments are the smooth
functions in the whole domain of the plate structure and the averaging procedure is
allowed. The internal moments MxC , MyC , MxyC at the centres of finite difference cells
are evaluated by using the derivatives of the rotations and material properties of
the plate:

MxC 1 [Eh3/12(1− n2)](Dqyn /Dx+ n Dqxn /Dy), (17)

Figure 5. Quadrilateral and triangular cells used for the finite difference computation.
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MyC 1 [Eh3/12(1− n2)](Dqxn /Dy− n Dqyn /Dx), (18)

MxyC 1 [Eh3/6(1+ n)]12(−Dqxn /Dy+Dqyn /Dx). (19)

Here E is the Young’s modulus, n is the Poisson’s ratio and h is the plate thickness. It
should be noted that the method used imposes that the material properties and the
thickness of the plate be constant within each finite difference cell, but different properties
can be used for different element cells. Once the internal moments are calculated at the
centres of the cells, the corresponding nodal values Mxn , Myn , Mxyn are computed by using
the interpolation/extrapolation procedure described previously. The computation
procedure for the shear forces QxC , QyC involves the moments evaluated at the nodes
corresponding to the finite difference cell:

QxC 1DMxn /Dx+DMxyn /Dy, QyC 1DMyn /Dy+DMxyn /Dx. (20, 21)

The displacements, rotations, internal moments and internal forces computed in the cell
centres are used to evaluate the structural intensity. The computation procedure developed
in the present paragraph defines a linear operator L(...) used in equation (4). The
members column vectors {Ik}mn , defined by equation (6), are constituted by using two
components of the intensity which correspond to directions x, y of the global co-ordinate
system:

Ixmn =Qxmwn +Mxmqyn −Mxymqxn , Iymn =Qymwn −Mymqxn +Mxymqyn . (22, 23)

The displacements wn and rotations qxn , qyn correspond to the mode denoted with a Greek
letter n, while the internal moments Mxm , Mym , Mxym and internal forces Qxm , Qym correspond
to the mode denoted with a Greek letter m. Positive values of these quantities are defined
in Figure 6.

3.3.        

  

To evaluate the structural intensity using the experimentally determined modal
parameters, some vibrational measurements in operating conditions were required, too.
Operating conditions were defined as the stationary conditions obtained when the plate
structure was excited with a random force perpendicular to the plate at point 172. The
point 196 is reference point.

The following measurements were performed during operation: the power spectral
density of the excitation force F	 , GFF (v)=F	 F	 */2; the power spectral density of the

Figure 6. Plate element; its co-ordinate system with positively defined internal forces and displacements.
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acceleration at the reference point ãR , GRP (v)= ãRã*R /2; the frequency response function
between the acceleration at the reference point ãR and the excitation force F	 ;
H	 RF (v)= ãR /(F	 ); the frequency response functions between the accelerations at each mesh
point ãi and the reference point ãR , H	 iR (v)= ãi /ãR . All these measurements were
performed in the range from 125–225 Hz with a frequency resolution of 0·25 Hz. The
experimental set-up was basically the same as the one used during the modal analysis
measurements. All required specta were calculated by a FFT analyzer. Frequency domain
averaging was used to reduce influence of random errors. Once the transfer functions are
established, the spectra defining the vibrations in operating conditions are computed:

ṽi ṽ*j /2= (1/v2)GRR (v)H	 iR (v)H	 *jR (v). (24)

The spectral matrix [V	 kl], which completely defines the vibrations in operating conditions,
is established by using the computed spectral data ṽi ṽ*j /2; see equation (24).

3.4.   

The modal parameters, and vibrations in operating conditions, are used to compute the
structural intensity distribution within the plate structure; see Figure 1. The mass matrix
of the structure considered needed for the computation is determined by using a finite
element technique and the mest shown in Figure 2.

In Figure 7 the frequency spectra of vibrational velocities for the operating condition
are presented. The spatial average of squared RMS velocity of the plate is indicated by
the thin line, while the thick line is used to present the squared RMS velocity of the
reference point. The spatial distribution of vibrations within the test structure is shown
in Figure 8. The squared RMS velocities measured at the nodes of the mesh are
interpolated within the finite difference cells and presented in the grey colour scale. The
darkest areas indicate the maxima of the vibrational velocities.

The position of the shaker is indicated by the letter S. The position of the shaker cannot
be deduced from the RMS velocity map. The maxima of the velocity field are not in the
excitation area.

Figure 7. Squared RMS velocities in the plate structure as a function of the frequency. Thin line, spatial
average of squared RMS velocity of the plate; thick line, squared RMS velocity of the reference point.
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Figure 8. Spatial distribution of RMS velocities within the plate-like structure. Darkest areas indicate the
maxima of the velocity field. The excitation point is indicated by the letter S.

On the contrary, the structural intensity field shown in Figure 9 might be of help in the
location of the source of structural vibrations. The structural intensity vectors show the
net energy flow coming out from the point of the shaker application. The magnitudes of

Figure 9. Structural intensity distribution within the plate-like structure; the excitation point is indicated by
the letter S.
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Figure 10. Divergence of structural intensity. Darkest areas indicate the maxima of the divergence of structural
intensity (i.e. power input areas). The excitation point is indicated by the letter S.

the vectors are given in the logarithmic scale in Figure 9. The divergence of structural
intensity vectors is shown in Figure 10. The darkest area indicates the maxima of the
divergence and the areas of the input of vibrational energy: i.e., the possible source
locations. The actual shaker position denoted with S coincides with the maximum of the
divergence of structural intensity; see Figure 10.

The power PF (v), injected by the shaker to the structure, can be computed by using the
velocity ṽF and the force F	 measured at the excitation point:

PF (v)=F	 ṽ*F /2. (25)

The power injected by the shaker is then dissipated in the structure. The spatial distribution
of the energy propagated within the structure is defined with the structural intensity field,
which in the case of plate type structures represents the energy propagating through the
unit length. According to the principle of conservation of energy, the power injected to
the plate can be deduced by integrating the component of the structural intensity vector,
which is normal to a closed curve (L) enclosing the vibrational source:

PI (v)=GL

I� · n: dl. (26)

Since the energy is dissipated while propagating through the damped structure the curve
should be as close to the source as possible. In this way the difference between the real
input power and the input power evaluted by the integration of the structural intensity
is reduced. In the present analysis the chosen curve is a rectangle in which the corners of
the four finite difference cells have a common node at the excitation point S. The integral
defined by equation (26) is estimated by using an appropriate numerical procedure and
the defined integration curve. In the frequency range considered (125–225 Hz), there is a
close agreement between the results obtained by the two methods.
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Fig. 11. Power injected into the plate-like structure as a function of the excitation frequency. Thin line, directly
measured injected power; thick line, indirectly injected evaluated by using the structural intensity distribution.

The total input power measured directly equals 2·0 mW, while the same power estimated
by the integration of structural intensity field is 1·7 mW. The frequency distribution of the
power injected to the test structure is presented in Figure 11. The thin line indicates the
injected power obtained by the direct measurements of force excreted by the shaker and
of the velocity of the excitation point according to equation (25). The thick (dark) line
indicates the input power estimated by the integration of struuctural intensity according
to equation (26).

4. CONCLUDING REMARKS

An experimental method for evaluation of structural intensity field by using a normal
mode approach and the vibrations in the operating condition has been developed. The
method has been applied to a structure which consists of two joined Perspex plates. The
structural intensity field and its divergence has been evaluated within the structure. The
maximum of the divergence of structural intensity, evaluated by using the method
developed, indicated clearly the position of the shaker which was used as the source of
vibrational energy in the experimental set-up. The power injected into the structure was
then estimated by integrating the structural intensity vectors over a closed curve enclosing
the excitation point. The results obtained have been compared with the results of direct
measurements of the input power performed by an impedance head. There is a close
agreement between the results obtained by the two methods.

The method presented for structural intensity evaluation, based on the modal approach,
is well suited for assembled thin-walled structures. At persent only assemblies of plates
have been treated but the method can be easily extended to plate–beam assemblies.
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